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Abstract
The state of generative AI has taken a leap forward with the availability of open source diffusion models. Here, we demon-
strate an integrated workflow that uses text-to-image stable diffusion at its core to automatically generate icon maps such 
as for the area of the Großer Garten, a tourist hotspot in Dresden, Germany. The workflow is based on the aggregation of 
geosocial media data from Twitter, Flickr, Instagram and iNaturalist. This data are used to create diffusion prompts to account 
for the collective attribution of meaning and importance by the population in map generation. Specifically, we contribute 
methods for simplifying the variety of contexts communicated on social media through spatial clustering and semantic filter-
ing for use in prompts, and then demonstrate how this human-contributed baseline data can be used in prompt engineering 
to automatically generate icon maps. Replacing labels on maps with expressive graphics has the general advantage of reach-
ing a broader audience, such as children and other illiterate groups. For example, the resulting maps can be used to inform 
tourists of all backgrounds about important activities, points of interest, and landmarks without the need for translation. 
Several challenges are identified and possible future optimizations are described for different steps of the process. The code 
and data are fully provided and shared in several Jupyter notebooks, allowing for transparent replication of the workflow 
and adoption to other domains or datasets.
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Automatische Kartenproduktion mithilfe generativer Text-zu-Bild Diffusion unter Nutzung 
von raumbezogenen Daten sozialer Medien

Zusammenfassung
Der Stand von generativen KI hat mit der Verfügbarkeit von Open-Source-Diffusionsmodellen einen großen Entwicklungs-
sprung vollzogen. Hier demonstrieren wir einen integrierten Arbeitsablauf, der im Kern Text-zu-Bild-Diffusion nutzt, um 
automatisch Icon-Karten zu generieren, z.B. für das Gebiet des Großen Gartens, einem touristischen Hotspot in Dresden. Der 
Arbeitsablauf basiert auf der Aggregation von raumbezogenen Daten aus den sozialen Medien Twitter, Flickr, Instagram und 
iNaturalist. Diese Daten werden verwendet, um textbasierte Eingabeaufforderungen („Prompts“) für den Diffusionprozess 
zu erstellen. Ziel ist es, raumbezogene kollektive Bedeutungs- und Wertzuschreibungen der Bevölkerung bei der Karten-
erstellung zu berücksichtigen. Insbesondere stellen wir Methoden zur Verfügung, welche helfen, die Vielfalt der in sozialen 
Medien kommunizierten Kontexte zu generalisieren und zu reduzieren. Durch räumliches Clustering und semantische 
Filterung erzeugen wir vereinfachte Zusammenfassungen und verwenden diese in Prompts. Der Prozess zeigt, wie von Men-
schen bereitgestellte Basisdaten mittels „Prompt-Engineering“ zur automatischen Generierung von Icon-Karten verwendet 
werden können. Das Ersetzen von Kartenbeschriftungen durch aussagekräftige Grafiken hat den grundsätzlichen Vorteil, 
dass ein breiteres Publikum, z. B. auch Kinder und Legastheniker, erreicht werden kann. Die daraus resultierenden Karten 
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können darüber hinaus verwendet werden, um Touristen jeglicher Herkunft über wichtige Aktivitäten, Sehenswürdigkeiten 
und Wahrzeichen zu informieren, ohne dass eine Übersetzung erforderlich ist. Es werden verschiedene Herausforderungen 
identifiziert und mögliche zukünftige Entwicklungen für verschiedene Schritte des Prozesses beschrieben. Der Quellcode 
und die Daten werden vollständig zur Verfügung gestellt und in mehreren Jupyter-Notebooks geteilt, was eine transparente 
Replikation des Arbeitsablaufs und die Übertragung auf andere Gebiete oder Datensätze ermöglicht.

process through the use of Stable Diffusion 1.5. This latent 
diffusion model (LDM), a specific model type that is par-
ticularly efficient and adaptable, has been trained on 5.85 
billion images (Schuhmann et al. 2022) and published by 
the CompVis group at LMU Munich and Stability AI (Rom-
bach et al. 2022). For prompt engineering, our approach 
uses human-based input data crowdsourced from people on 
the web (Instagram, Flickr, Twitter, iNaturalist). Based on 
a multi-step process, we generate prompts by aggregating 
geosocial media data through spatial and semantic clustering 
of (e.g.) tags and emoji. These prompts are then used in a 
text-to-image diffusion process to generate graphical icons. 
The icons are further processed before being scaled based 
on collective importance, placed on the map, and rendered 
together with other map elements such as background tiles. 
The resulting maps can be used to promote inclusive car-
tography (Holloway et al. 2019), for example by targeting 
children or illiterate groups. Our study highlights both the 
benefits of component-based generative cartography and the 
challenges that require further investigation.

2  Literature Review

The use of generative AI is currently undergoing a very 
dynamic development. Similar to García-Peñalvo and 
Vázquez-Ingelmo (2023), we use “generative AI” as an 
umbrella term to describe the emerging class of text-to-text, 
text-to-image, and image-to-image models. These models 
have great potential to augment and replace human creativity 
in many application domains, such as visualization (Schet-
inger et al. 2023) or as an aid to map generation (Juhász 
et al. 2023). So far, Juhász has been the only one to explore 
potential applications of text-to-text models in cartography. 
Current research in this area focuses mainly on image-to-
image and text-to-image transformations, with the former 
accounting for the vast majority.

One of the first approaches utilizing image-to-image 
transformations to generate map representations was pro-
posed by Kang et al. (2019). They used generative adver-
sarial networks (GANs) to transform GIS vector data into 
Google Map-style maps, mimicking different painting styles. 
While the results were encouraging, the study revealed prob-
lems with topology, point markers, and text labels. Simi-
larly, Chen et al. (2021) used GANs for image-to-image 

1 Introduction

Generative artificial intelligence (Generative AI) describes 
the use of deep learning to create text, images, or other 
media by reproducing patterns, structures, and relationships 
from input training data. Notable examples of generative 
AI include large language models (LLMs), such as Chat-
GPT, Bard, and LLaMA, and diffusion-based text-to-image 
models (Rombach et al. 2022), such as Midjourney, DALL-
E, and Stable Diffusion. All text-to-image and text-to-text 
models share the ability to be guided by natural language 
input prompts. Schetinger et al. (2023) highlight the pos-
sibilities of applying generative models to all stages of the 
creative content creation process and illustrate a number of 
challenges and opportunities that have emerged. Examples 
of opportunities include reducing the mental effort required 
to design appropriate data models, automating tedious or 
repetitive cleanup tasks, speeding up processes, shaking up 
entrenched beliefs, suggesting novel color mappings, coun-
teracting user biases, and adapting visualizations and maps 
to user needs, preferences, and disabilities.

A key issue discussed is agency, which is used to describe 
the ability of analysts to modify the outcome of the con-
tent generation process (Epstein et al. 2023). For example, 
the study by Schetinger et al. (2023) found that unreliable 
results, misinformation, and limited control over the content 
generation process were perceived by users as the greatest 
barriers. In this paper, we consider graphical content crea-
tion from a cartographic perspective using text-to-image 
diffusion models. Conceptually, there are several levels at 
which diffusion models (DMs) can be applied to cartogra-
phy. One possibility is the direct production of maps. This 
has been shown by Chen et al. (2021) for satellite imagery 
and in combination with image-to-image diffusion, or by 
Kang et al. (2023) for direct map generation from prompts 
using text-to-image. Both approaches are comparable to how 
neural style transfer (Ai 2022) can be used to generate maps 
with specific looks. What these methods have in common 
is a single-step generation process. This limits the ability of 
humans to influence and modify the generated result and can 
introduce unwanted inaccuracies and misleading informa-
tion, an issue that may be particularly important in cartog-
raphy (Kang et al. 2023).

In this work, we propose a component-based workflow 
that provides more control at different steps of the generation 
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transformation to generate Google Map-like map tiles from 
high-resolution satellite imagery. The authors used semi-
supervised learning with paired and unpaired training exam-
ples. In a follow-up study (Chen et al. 2022), this approach 
was extended to multiscale map generation by transform-
ing already styled tiles. The method of neural style transfer 
based on convolutional neural networks (CNNs) was first 
applied to artistic map generation by Bogucka and Meng 
(2019). The authors transferred painting styles with differ-
ent emotional expressiveness to a map of Berlin. Christophe 
et al. (2022) used GAN-based neural maps to transfer his-
torical map styles (e.g., Cassini, Etat-Major) to orthoimages. 
Zhao et al. (2021) explored the reverse transformation, using 
Cycle-Consistent Adversarial Networks (CycleGAN) to 
transform CartoDB topographic basemaps into fictional sat-
ellite images, highlighting the potential for AI manipulation.

Diffusion models were introduced by Sohl-Dickstein 
et al. (2015), but did not gain traction until 2022, when 
OpenAI made DALL-E 2 available. This model was the 
first to produce images with a quality comparable to photo-
graphs or human-drawn art. At the time of this study, Imagen 
(Google), Midjourney, and Stable Diffusion are the three 
other text-to-image models that can achieve a similar level 
of quality (Zhang et al. 2023). These models contain pre-
trained weights based on the training data. Models are also 
called checkpoints. They can be merged with other models 
or further trained and refined on a specific subject and set 
of images using various methods to modify weights (Ruiz 
et al. 2022). All text-to-image models have two components 
in common. The first is a language model that transforms 
an input text (the prompt) into a latent representation. This 
text representation is then used in the second component, 
the generative image model, to guide the image generation 
process towards the desired result. A denoising diffusion 
probabilistic model (DDPM) is often used here, as proposed 
in a seminal paper by Ho et al. (2020). The method is based 
on random noise that is progressively subtracted in discrete 
steps (e.g., 50) by the name-giving denoising process. The 
efficiency of the denoising process is evaluated on the train-
ing data. Since large diffusion models are typically trained 
on millions of annotated images, rich representations are 
available, such as low-level image knowledge (textures, 
colors, transitions) or high-level semantic relationships 
(Zhao et al. 2023), allowing for subtle evaluation of mean-
ing and context.

Exactly how the prompt and parameters need to be 
defined for different image generation tasks remains to 
be tested and explored. Prompt engineering has emerged 
as a new area of research (Nori et al. 2023; Witteveen and 
Andrews 2022). The term describes the often iterative def-
inition of text prompts as part of generative processes to 
achieve a desired output. Several mechanisms can be con-
sidered as part of prompt engineering. One example are 

negative prompts (Rombach et al. 2022), which invert the 
diffusion evaluation so that the given text prompt represen-
tation is not produced. Prompt engineering also includes 
techniques and strategies that help to incrementally refine 
and improve the results. Critical to such incremental 
improvements is the initial seed, which describes the start-
ing value of the noise. If the seed and all parameters are left 
unchanged, the diffusion model will deterministically pro-
duce the same image. In prompt engineering, this property 
can be exploited using an identical seed with a minimally 
changed prompt or parameter selection to evaluate subtle 
changes (Dehouche and Dehouche 2023; Tsai et al. 2023). 
For the actual text prompt, Oppenlaender (2023) suggests 
a taxonomy of repeatedly used prompt parts, such as “[…] 
subject terms, image prompts, style modifiers, quality boost-
ers, repeating terms, and magic terms” (p. 14).

The usefulness of text-to-image diffusion models for 
cartography was first explored by Kang et al. (2023). They 
used DALL-E (a closed-source model from openai.com) to 
generate sample maps from user-defined prompts (e.g., “A 
choropleth map of [sic] United States with warm colors”, p. 
3, ibid.). In their summary, the authors discuss ethical impli-
cations and note that inaccuracies, misleading information, 
unexpected features, and irreproducibility are major issues. 
Unexplored so far are workflows that use text-to-image diffu-
sion models as components to generate only part of the map 
representation. This is surprising given that maps typically 
consist of multiple data sources that are processed individu-
ally and then arranged and assembled into different layers, 
symbols, and labels, etc. to communicate information (e.g., 
Wood and Fels 1986). The meaning of maps can vary con-
siderably between different types. For example, topological 
maps reduce information and detail to a necessary minimum 
while maintaining topological relationships to support way-
finding in (e.g.) public transportation systems. In contrast, 
more creative map types exist, such as concept maps (Cañas 
et al. 2005) or tourist symbol maps (Brown et al. 2001). In 
their review of cartographic challenges related to geospatial 
big data, Robinson et al. (2017) point to the particular chal-
lenge of scaling the output of artists in mapmaking, empha-
sizing that “a solution needs to be found for the digital gen-
eration of artworks that are both meaningful wholes and are 
somehow a true representation of a big data set” (p. 45).

Icons and symbols are particularly well suited to begin 
such an endeavor, as they are pictorial representations of 
largely independent concepts that can be visualized on 
maps. Lin et al. (2014) explored an automated icon genera-
tion process from 3D models for landmark representation on 
maps, but their approach is limited to buildings for which 3D 
models exist. In addition, pictorial icons can be used to con-
vey meaning beyond known landmarks. Maps can illustrate 
activities, objects such as benches (etc.), neighborhoods of 
communities, points of interest, or ephemeral features that 
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recur at particular locations such as events, wildlife (etc.). 
Brown et al. (2001) attempt to conceptualize this process 
and propose to distinguish three types of information levels, 
(1) primary content (symbols, objects and other map focal 
points), (2) secondary content (base map, topographic infor-
mation), and (3) supporting content (legend, grid, additional 
information). Icons and symbols, in particular, can support 
the main theme of the map and may be scaled according to 
perceived importance or arranged in a particular order and 
pattern by the mapmaker (Wood and Fels 1986).

Here, generative AI methods offer to fill the important 
gap of the limited supply of artistic production in cartogra-
phy (Zhang et al. 2023) to draw maps of any scale and size. 
In addition, with the widespread availability of data shared 
on geosocial media, a data source exists to map and visualize 
collectively weighted subjective information of large groups 
of people (Dunkel 2015). We combine these two opportuni-
ties to automatically generate icon maps. Since many steps 
are non-trivial tasks on their own, such as icon offset place-
ment, semantic similarity-based clustering to detect outliers 
in a group of words, or geosocial media data mapping, we 
limit our description to the novel parts of the process. In 
particular, we focus on the prompt engineering of the text-
to-image process, the parameterization, and the compila-
tion of the final map. To reproduce the results and graphics 
shared here, three Jupyter notebooks are made available in 
the Supplementary Information (S1–S3) and are provided 
along with the data and code in a separate data repository 
(Dunkel et al. 2023).

3  Methods

3.1  Prompt Engineering Overview

Prompt engineering is at the core of our workflow. We begin 
with an overview of this step and later describe the tasks that 
precede and follow it. Figure 1 illustrates the main parts of 
our prompt engineering approach in the context of map icon 
generation. We distinguish three steps. Input data (1) derived 
from geosocial media (highlighted in red in Fig. 1) is used 
to derive the subject prompt for the icons. This data are ref-
erenced as a placeholder in the base-positive prompt, which 
we consider, together with the base-negative prompt, to be 
the core of prompt engineering (2). The positive prompt also 
consists of a static pre-prompt, which is a leading place-
holder that is used equally across all images to improve the 
ability to later place graphics without background on a map. 
Other parts of the base-positive prompt are used as style 
and quality modifiers. Similarly, the base-negative prompt 
is applied to all images. While stable diffusion is invariant to 

commas, spaces, punctuation (etc.), we still use these char-
acters to improve readability. To generate images (3), we use 
an application programming interface (API) to Stability AI's 
diffusers library,1 which is provided by a Python package.2 
The package offers several special operators in text prompts 
to direct the attention of the diffusion process. For example, 
parentheses “(” and “)” can be used to increase the attention 
for selected words by a factor of 1.1, or a colon (:) can be 
used to define the attention factor directly, followed by the 
weight (see Fig. 1).

The remaining static prompt parts (Fig. 1) were con-
structed from sample texts shared by the stable diffusion 
community and our own empirical testing. This testing pro-
cess is not deterministic. We make use of several specific 
parameters and models to fine-tune the results, such as a 
low-rank adaptation (LoRA) for style transformations (detail 
reduction) or a negative textual inversion embedding. These 
additional parameters and model-related parts are described 
in Sect. 3.3.

3.2  Map Production Workflow

To generate maps, several additional steps are required 
before and after the prompt engineering. Our entire work-
flow can be broken down into eight largely independent 
steps.

1. Subject prompt preparation

a. Area selection
b. Data collection
c. Geosocial media preprocessing and clustering
d. Spatial cluster merge
e. Semantic cluster split

2. Model selection

a. Checkpoint model,
b. LoRA (Low-rank adaptation), Hu et al. (2021); Tex-

tual Inversion, Gal et al. (2022)
c. Pretrained VAE (Variational Auto Encoder), 

Kingma and Welling (2022)

3. Parameter selection
4. Prompt engineering (see Fig. 1, Sect. 3.1)
5. Image generation
6. Background removal
7. Map compilation (image placement, scaling, composi-

tion mode, background map)
8. Optional image-to-image pass

1 https:// github. com/ Stabi lity- AI/ stabl ediff usion.
2 https:// github. com/ AUTOM ATIC1 111/ stable- diffu sion- webui.

https://github.com/Stability-AI/stablediffusion
https://github.com/AUTOMATIC1111/stable-diffusion-webui
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The first step (1) is to prepare the subject prompt based 
on the aggregation of geosocial media data. The code for 
this process is provided in Supplementary Information S1 
and S3. The data are provided in a separate repository (Dun-
kel et al. 2023). In this step, we first select an area and a 
scale for which the map is to be generated (1a). Next (1b), 
data are collected from public geosocial media APIs and 
transformed into a common data structure format (see Dun-
kel et al. 2020). The data (individual terms and emoji) are 
then (1c) spatially and thematically clustered using HDB-
SCAN (McInnes et al. 2017). From these clusters, alpha 
shapes for different terms and emojis are derived using the 

tagmaps package.3 Since we are interested in the use of mul-
tiple terms and emojis in prompts, we add a spatial cluster 
merging step (1d) to combine different terms and emoji that 
are used in the same region (e.g., “stadium”, “football”, 
“game”).

Sometimes several terms in the same spatial cluster 
group can refer to semantically different contexts (e.g., at 
different times). For example, the term “rammstein”, a ref-
erence to a music band that once performed at the Dynamo 
Dresden stadium, may appear as a semantic outlier in a 
group of terms related to soccer games (e.g., “stadium”, 
“football” and “game”). This is not surprising given that 
other types of events at the stadium, such as concerts, are 

Fig. 1  Prompt engineering: from input data, such as emoji shared on social media, to generated output icons. Different types of prompt parts are 
highlighted

3 https:// gitlab. vgisc ience. de/ ad/ tagma ps.

https://gitlab.vgiscience.de/ad/tagmaps
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also communicated by social media users in addition to the 
prevalent football-related events. We wanted to cover these 
scenarios by creating different graphics for sufficiently dif-
ferent contexts. For this reason, we add a semantic cluster 
splitting step (1e) based on hierarchical clustering and cosine 
similarity computation. In this step, we identify the primary 
topic and split unrelated meanings (i.e., terms) into a sec-
ond semantically different subject prompt. Later, we decided 
to still display these subordinate meanings as individual 
images, but to reduce their size (by scaling) on the map. To 
separate primary topic and unrelated outliers, we use a static 
threshold based on the normalized cosine similarity metric 
between word vectors (see S3 and Supplementary Materials, 
Dunkel et al. 2023).

Next, models (2) and parameters (3) for the diffusion pro-
cess must be selected, as described in Sect. 3.3. Settings, 
data and prompt engineering (4) are brought together in 
the core image generation step (5). We generate images in 
batches of four, which makes it possible to compare output 
maps for different iterations, without having to regenerate 
images. Then, to place images on a map, we use Dichoto-
mous Image Segmentation (DIS, Qin et al. 2022) together 
with the “isnet-general-use” model (Jin et  al. 2021) to 
remove white backgrounds from images (6). The final map 
compilation (7) is implemented in Mapnik and includes 
several additional tasks, such as icon offsetting based on 
collisions, icon scaling based on weights (i.e., frequency of 
use on geosocial media), or adding a background map layer. 
Finally, we tested an optional ad hoc image-to-image pass 
(8) to unify and fuse the icons with the background map.

3.3  Model and Parameter Selection

The diffusion process can be influenced by the choice of 
base model and various parameters. The number of param-
eters and models available necessitated the use of several 
strategies to verify suitability and progress. Our overall goal 
was to produce minimalist graphics that could be placed on 
maps, since it is not practical to represent the full complexity 
of the contexts discussed by online users. We first selected 
parameters that had the greatest impact on the generated 
graphics (e.g., the checkpoint model), and then gradually 
added other models and parameters that had less impact. 
A primary distinction must be made between image con-
tent and style (Oppenlaender 2023). Style parameters affect 
all images and should therefore be tested to work across 
a range of prompts and objects. In contrast, the generated 
image content depends mainly on the dynamic prompt parts 
that change from image to image. The key strategic decisions 
here are the number of dynamic terms to use, the order of 
terms, or the selection and combination of operators. The 
evaluation of these content-related decisions is more diffi-
cult to do holistically, and we present individual results for 

a selected area and a limited number of image examples in 
Sect. 4. In the following, we summarize strategic decisions 
that affect the style of all generated graphics. Here, the free-
dom of the generative process is progressively reduced dur-
ing the prompt and parameter refinement process, making 
outliers and unwanted results less likely. To evaluate effects 
in isolation, we either left the seed unchanged to observe 
small changes in the prompt, or left the prompt unchanged 
while minimally changing a single parameter.

This iterative testing and refinement process for model 
and parameter selection is shared in S2 and S3 (Dunkel 
et al. 2023). We selected a checkpoint model called “hel-
lofunnycity”.4 There has been a phenomenal growth of 
these models shared on platforms such as civitai.com or 
huggingface.co. However, the majority of models focus on 
human figures and improving the details of drawn humans 
by providing additional training such as for 5-finger hands. 
A few models include additional training data for objects 
or styles. Our selection above is one such model. It is based 
on the Stability AI 1.5 base model and is further trained 
to produce comic-style graphics. The generated graphics 
are less detailed than realistic images and therefore more 
suitable for our application. To further reduce complexity, 
we use a LoRA (Low-rank adaptation, Hu et al. 2021) pre-
trained on Japanese minimalist line drawings.5 For both the 
LoRA and the checkpoint, we were unable to contact the 
original authors and therefore cannot provide information on 
the training procedure or the underlying data used. The use 
of data of unknown origin makes it all the more important 
to systematically evaluate effects. Here, generating image 
series with a random seed greatly improved our evaluation, 
since a given combination of prompt and parameters may 
produce only a certain percentage of desired results.

To better illustrate this process for the LoRa, compare the 
following text prompt with a tree emoji ( ) surrounded by 
the attention operator “(” and “)”, and the LoRa reference 
with an explicit attention weight attached (“1.0”).

“( ) <lora:Japanese_style_Minimalist_Line_Illustra-
tions:1.0>”

Our goal was to find an appropriate weight for the LoRA 
to be used in all images. Each row (Fig. 2) shows a series 
of four images. Each image was generated with a different 
random seed for the same attention weight per row, ranging 
from 0.2 (low weight) to 1.2 (high weight). Indeed, the six 
series allow to observe a gradual progression towards the 
minimalist Japanese line drawing style, with higher weights 
showing an increasing reduction of detail. At the same time, 
artifacts begin to appear at a weight of 0.6, such as blurred 

4 https:// civit ai. com/ models/ 124336/ hello funny city.
5 https:// civit ai. com/ models/ 124933/ japan esest ylemi nimal istli neill 
ustra tions.

https://civitai.com/models/124336/hellofunnycity
https://civitai.com/models/124933/japanesestyleminimalistlineillustrations
https://civitai.com/models/124933/japanesestyleminimalistlineillustrations
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and white areas in the treetops. At higher weights, more and 
more tree images would be generated without color, which 
would be difficult to read on a map. We created several of 
these series for different emoji to test the suitability of the 
LoRa for different content. For some emoji (e.g., the water 
wave emoji ), higher values tended to produce figure 
shapes (see S2). This is likely due to an overrepresentation 
of images depicting people in the LoRa training data. Based 
on these findings, we chose a relatively low weight of 0.2 for 
the LoRa across all generated images, which we found to be 
more robust and controllable.

Other settings had smaller but still noticeable effects. For 
example, we used a Variational Auto Encoder (VAE, Kingma 
and Welling 2022) to improve image quality (e.g., vivid colors, 

sharper details) and reduce artifacts in the generated images.6 
The VAE also had the effect of converting light gray back-
grounds to pure white, which is more suitable for background 
removal. Furthermore, in the base-negative prompt, we refer-
ence a textual inversion (Gal et al. 2022) that contains embed-
dings of negatively perceived vocabulary (“bad-artist”, Fig. 1).7 
These embeddings teach the base model new vocabulary about a 
particular concept, which can be referenced in the prompt using 
a token like the one above. The remaining settings are mostly 
defaults, such as a “clip skip” of 1 (no skipping of text embed-
ding layers, for more specificity), a medium number of sampling 
steps of 28 (slightly increases quality while keeping resource 
requirements relatively low), a relatively high denoising strength 
of 0.75 (allows more creativity), and a Classifier-Free Guidance 
(CFG) scale of 7. The CFG scale defines how closely the model 
follows the input prompt, with lower values allowing for more 
creative interpretations. A CFG scale of 7 results in medium 
fidelity between the prompt and the output images.

Finally, a large number of samplers are available to influ-
ence the iterative denoising process. Sampling describes 
how noise is computed and used to incrementally improve 
(denoise) the results over many steps, given the model train-
ing data and prompt. Samplers range from generic sampling 
methods (e.g., Euler, Heun; Roberts 2012) to specific diffu-
sion samplers such as Karras et al. (2022), DPM (Lu et al. 
2022), or DDIM (Song et al. 2022). Samplers can be distin-
guished based on their behavior for improving images over 
steps. Generic samplers belong to the group of deterministic 
sampling methods, where the only source of randomness is 
the initial noise defined by the seed. This means that after a 
certain number of steps, the details of the image content do 
not improve any further, at which point the sampling is said 
to have converged. In contrast, the second group of stochas-
tic samplers has been shown to produce better output quality 
by injecting fresh noise into the image at each step (Karras 
et al. 2022). These samplers still produce the same images 
after a certain number of steps given the same seed, but they 
do not converge. In other words, each image detail can be 
transformed into another as more sampling steps are used. 
The sampler we used (DPM++2M SDE Exponential) is 
such a non-deterministic sampler. The main aspects we con-
sidered were efficiency and quality, i.e., producing an image 
of high perceptual quality quickly. Our choice tended to pro-
duce high quality images with a relatively small number of 
sampling steps. A trade-off was that the sampler sometimes 
produced artifacts such as extra limbs or convoluted fusions 
of different contexts such as different animals combined into 
one. We found these artifacts acceptable because the map 
icons are small and the sampler was able to quickly produce 

Fig. 2  Incremental weight increase for the Japanese minimalist line 
drawings LoRa, with attention increasing from 0.2 (top row) to 1.2 
(bottom row) for the subject prompt “( )” (the tree emoji), see Sup-
plementary Information S1 (Dunkel et al. 2023)

Table 1  Overview of data sources and queried data

Instagram Flickr Twitter iNaturalist

Photos 106,385 19,729 7183 417
Users 50,628 1839 2152 120
Period 2010–2018 2007–2022 2016–2022 2010–2022

6 https:// huggi ngface. co/ stabi lityai/ sd- vae- ft- mse- origi nal.
7 https:// huggi ngface. co/ nick-x- hacker/ bad- artist.

https://huggingface.co/stabilityai/sd-vae-ft-mse-original
https://huggingface.co/nick-x-hacker/bad-artist
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images of high perceptual quality given the large variability 
of contexts communicated in social media.

3.4  Data Collection

We chose a test area in Dresden, Germany, which covers 
about 6.0  km2 of the city and includes the largest public 
park, the Großer Garten. This area is popular among tour-
ists because it offers a variety of places and points of inter-
est for different activities. We queried available metadata 
(titles, descriptions, tags, emoji) for publicly shared and 
georeferenced images from the APIs of four social networks 
(Table 1). For iNaturalist, taxonomic species references were 
converted to emoji when a matching Unicode emoji charac-
ter was available. The data contains a total of 347,191 tags 
and 44,427 emoji, which form the basis of our aggregation 
and visualization workflow.

3.5  Spatial and Semantic Clustering

Processing geosocial media from multiple sources is a non-
trivial task, with challenges often referred to as the 5V’s 
of big data (velocity, volume, value, variety, and veracity) 
(Laney 2001; Robinson et al. 2017). We first transform the 
data into a common cross-network geosocial data structure.8 
We use a number of preprocessing and filtering techniques 
to prepare the geosocial media data prior to analysis and 
clustering. Most of these preprocessing steps are applied 
during the ingestion step of the tagmaps package and are 
based on default parameters without the need for human 

intervention. These steps include a broad stop list for filter-
ing specific terms and tags (e.g., exclude only numbers, fill 
words with little lexical content, or camera brands, etc.). For 
emoji filtering, since some emoji are used very generically 
in many contexts, we use a broad positive filter list of 693 
emojis (out of about 2000 available) to focus on activity and 
environment contexts (see S3).

To create prompts with a maximum of three terms for 
each graphic, we had to aggregate the data based on spatial 
and semantic similarities. We also needed to limit the num-
ber of graphics generated to reduce the overlap of icons on 
the map. This process must also be automated, as human 
supervision is difficult given the volume of data available. 
Spatial clustering is performed using HDBSCAN, which 
groups tags and emojis into spatially distinct point clouds. 
Area or alpha shapes are then created for these point clouds 
as concave and convex hulls based on Delaunay triangula-
tion (the scipy.spatial implementation). Figure 3 shows a 
subset of these alpha shapes for the area of the Großer Gar-
ten. Each alpha shape represents a distinct footprint of a 
collectively used emoji or term communicated on geosocial 
media. Each shape is assigned a weight calculated based on 
the frequency of users and photos referencing that term or 
emoji.

Since each alpha shape references only one term or emoji, 
and we wanted to generate prompts with multiple terms, 
these individual term and emoji clusters are then combined 
into “cluster groups” (a spatial union operation) based on 
several criteria. First, the largest clusters by percentage of 
total area are selected to extract "background contexts" that 
cover the majority of the study area. We use a cutoff area 
percentage value of > 20%, which extracts all terms referring 

Fig. 3  Spatial cluster merging based on cluster area (alpha shape 
size) and cluster weight (user and post frequency). Left image: clus-
ter boundaries for weights > 10 and ≤ 100. Right image: largest cluster 

group covering more than 20% of the study area, with terms related to 
the Großer Garten park in Dresden, Germany

8 https:// lbsn. vgisc ience. org.

https://lbsn.vgiscience.org
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to the Großer Garten in our example (e.g., “grosergarten” 
[sic], “garden”, “garten”, “großer”, “park”; right image in 
Fig. 3). Then, all other clusters are processed sequentially 
and grouped based on spatial overlap until a fixed lower 
weight threshold is reached (e.g., weights ≥ 10). The terms 

and emojis in each cluster group are then sorted in descend-
ing order based on usage frequency, and each cluster group 
is truncated to a maximum of three terms.

As social media users communicate different events 
from the same locations, it is not uncommon to find terms 
and emojis related to different topics within the same spa-
tial cluster group. To mitigate the risk of icon clutter from 
unrelated topics, we propose a generalization approach that 
identifies the dominant topic for each cluster group. This 
step allows us to individually feed terms for different top-
ics to the diffusion algorithm for separate icon generation. 
We implemented this semantic cluster splitting using hier-
archical clustering based on word embeddings (word2vec, 
Mikolov et al. 2013) and cosine similarity computation. The 
embeddings were generated from a pre-trained Word2Vec 
model. These word embeddings capture the semantic prop-
erties of terms based on their co-occurrence and order in 
social media posts, allowing for the measurement of similar-
ity. Since communication varies greatly across regions and 
languages, we specifically trained this model using geosocial 
media data collected for the city of Dresden (Gugulica and 
Burghardt 2023). We computed the cosine similarity matrix 
between the word embeddings of a cluster group. The cosine 
similarity metric is then calculated by dividing the dot prod-
uct of the vectors by the product of their lengths, which indi-
cates the strength of semantic similarity between words. The 
matrix is the basis for the hierarchical clustering algorithm. 
We use a fixed threshold (0.3) for the cosine distance. This 
threshold is transformed into a fixed value (0.7) for the simi-
larity metric by subtracting the value from 1 (0.7 = 1–0.3). 
The closer the value is to 1, the higher the semantic similar-
ity. This threshold is used to identify the semantic cluster 
containing the majority of terms, which corresponds to the 
dominant topic. Words found in the remaining clusters are 
marked as semantic outliers.

Fig. 4  Examples of fine-tuning parameters and prompts. First two 
rows: pre-prompt “thought bubble of” vs. “A map icon of”, for white 
background, non-square image generation. Third and fourth row: 
attention splitting with brackets “(” and “)” for cluster terms and 
emojis in ascending importance, based on frequency of social media 
use. Last row: Prompt engineering based on cluster type classifica-
tion, e.g., activities (as shown), verbs, objects, places (etc.). See Sup-
plementary Material, S3 (Dunkel et al. 2023)

Fig. 5  Applying quality modi-
fiers such as “happy” (top row) 
to generate friendlier icons 
compared to images generated 
without modifiers (bottom row)
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4  Results

Before creating the final map, we tested different combi-
nations of pre-prompts, quality modifiers, operators, and 
geosocial media terms (Fig. 4). For example, to drive the 
diffusion process to produce non-square image icons with 
preferably white backgrounds, we tested “thought bubble 
of” (row 1, Fig. 4) and “a map icon of” (row 2, Fig. 4). We 
chose the latter because it produced a greater variety of icon 
shapes. Additional test runs focused on combining users’ 
emojis and tags into a single prompt and directing attention 
to only the first term/emoji based on ascending frequency of 
use (rows 3–4, Fig. 4).

Here, our results show that the diffusion process is poor 
for too complex combinations of terms and emojis. This is 
especially true for emojis, since they already reduce com-
plex contexts to pictorial symbols. Therefore, we rejected 
this direction. We also found that subject terms should be 
limited to a maximum of three terms and that the attention 
operators “(” and “)” should include all three terms, instead 
of (e.g.) just the first one, because otherwise terms outside 
the attention modifiers would be largely ignored. Specifically 
for emoji image generation, we added a quality modifier 
(“happy”) because without it, the generated icons looked a 
bit sad and dull (bottom row, Fig. 5).

The final map (Fig. 6) consists of icons for 20 cluster 
groups (16 tag groups, 4 emoji groups). The icon for the 
“(garten, garden, park)” group, which was transformed into 
a tree with flower beds around it, received the highest weight 
and was therefore scaled the largest. The four emoji clusters 
mainly represent what is given as the first emoji in the clus-
ter group, such as a cactus for the “( )” group that 
can be found at the Botanical Garden location; a monkey for 

the “( )” group at the Dresden Zoo location; a 
soccer player for the “( )” group at the Dynamo 
Dresden stadium; and a somewhat hard-to-identify circular 
icon for the music emoji “( )” at the Junge Garde, a popu-
lar open-air music venue in the southeast corner of the 
Großer Garten.

Similar observations to the emoji clusters can be made 
for tag clusters. Here, the diffusion process also tends to 
ignore terms for which there is little training data. An exam-
ple of this is the cluster for the VW Gläserne Manufaktur 
(“Transparent Factory”), a brand showcase and production 
site, referenced by “(volkswagen, manufaktur, gläserneman-
ufaktur)”, which are the three most commonly used terms in 
this area by geosocial media users. All four images generated 
in the batch for these terms resulted in a VW minibus icon, 
ignoring the references to the production site (“manufak-
tur”) and its characteristic transparency (“gläserne”). This 
can also be observed for “(estancia, steak)”, as a reference 
to a restaurant in this area. The generated image shows a 
direct visual interpretation of the term “steak” because there 
is little reference data available for “estancia” as the proper 
name of the restaurant. For “zoo, zoodresden, animals”, the 
diffusion produced an image of a tiger, which we consider 
too specific for the given list of terms. Given these terms, we 
expected an image of several animals in a zoo environment. 
In other cases, such as for “(brunnen, mosaik)”, the gener-
ated image is able to convey basic characteristics (a foun-
tain with mosaic stones), but fails to reproduce the actual 
unique visual appearance of the original. This is not surpris-
ing, given that Stable Diffusion 1.5 was trained on generic 
images scraped from the web. Creating separate graphics 
for semantic outliers in cluster groups resulted in a number 
of additional icons that are scaled down on the map. This 

Fig. 6  Composite map (left) for the Großer Garten area in Dresden, 
Germany, based on generative text-to-image from geosocial media 
and a background tile map style from Gröbe et al. (2020). The emoji 

and tags derived from the spatial clustering of geosocial data and 
used for the diffusion subject prompt are listed on the right
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includes a graphical fusion of the terms “rammstein”, “konz-
ert”, and “museum” (upper left corner of Fig. 6), which 
otherwise would have been merged with the terms found 
at the Dynamo Dresden stadium, due to spatial proximity. 
However, “rammstein/konzert” and “museum” (referring to 
the Hygiene-Museum Dresden) also refer to semantically 
different contexts. Solving this situation would require recur-
sive semantic separation, which is not yet implemented in 
our workflow. A small robot driving a scooter is a pictorial 
representation of the term “robotron”, a proper name of the 
area, which is difficult to interpret as such on the map.

5  Discussion and Conclusions

Generative cartography is a new area of map making based 
on automated content production with unique requirements, 
challenges, and limitations. Our work highlights the ben-
efits of breaking the generative process into multiple dis-
crete steps. These components can be individually tuned 
and improved, helping to increase analysts' agency over the 
map production process. Specifically, we demonstrate how 
multifaceted contexts communicated in geosocial media can 
be aggregated and generalized for use in generative text-
to-image prompts, and show how these prompts produce 
visual representations that can be placed on a map. Prompt 
engineering is at the core of our workflow. Here, human-
contributed baseline data from geosocial media is fused with 
multiple static parts, such as base-positive prompt, base-
negative prompt, modifiers, and models, to create a unique 
and consistently styled map. While human supervision is not 
required, it can help improve the readability of the produced 
map by incrementally calibrating and fine-tuning individual 
parameters. Based on our parameter fine-tuning, the map 
shown in Fig. 6 is already capable of illustrating complex 
collective meanings in the area of the Großer Garten in 
Dresden.

However, many settings, parameters, and model choices 
can be used to influence the diffusion process, and it is diffi-
cult to assess the effects a priori. We demonstrate approaches 
to fine-tune the effects of individual parameters, such as 
incrementally adjusting the attention weight for the Japanese 
line drawings LoRa (Fig. 2) or the composition of prompt 
and attention operators (Figs. 4 and 5). Many steps require a 
trade-off between control and creativity. More control often 
means less creativity, and vice versa. The same is true for 
the subdivision of steps in the workflow. More subdivision, 
such as allowing the generation of a larger number of icons 
for semantically different topics, will result in better pictorial 
representations because diffusion is easier for less ambigu-
ous prompt terms. However, more icons will also lead to 
more icon clutter on the map, which is a challenge for the 
icon placement and scaling step. There are several solutions 

that could help significantly improve these specific subprob-
lems of cartography, such as automatic icon and label place-
ment algorithms (Huang and Gartner 2012), which we do 
not currently use.

We tested four iterations based on random seeds to gen-
erate the map icons for the Großer Garten (see S3). All 
iterations produced icons of similar quality to the examples 
shown in Fig. 6. Interestingly, in contrast to text-to-text 
models, where larger and more specific prompts typically 
lead to better quality (Nori et al. 2023), our text-to-image 
workflow produced the most appropriate images for prompts 
that were limited to a few terms or concepts. In particular, 
prompt engineering helped improve robustness and reduce 
the likelihood of unwanted results, although a clear meth-
odology is lacking in the literature. We use several options 
to divide prompt parts into static and dynamic components 
with different tasks. For example, using a static pre-prompt 
(“A map icon of”, Sect. 4), we were able to produce non-
square icons that could be better placed on maps. Or, by add-
ing “isometric” to the static negative prompt, we effectively 
prevented the generation of isometric icons. The greatest 
variance in output quality was introduced by the dynamic 
prompt parts responsible for icon content, where we also 
had limited control due to the use of geosocial media data. 
In the future, automatic quality evaluation routines based 
on image recognition techniques could help select the most 
appropriate images from a set of images. Another example 
with great potential for image generation, currently used 
only to improve LLM prompts, are “micro-agents” that fine-
tune results by self-editing prompts.9

Our map production workflow, based on multiple layers 
that are combined at the end, helps maintain topographic 
order, but results in relatively little fusion between back-
ground tiles and foreground symbols. This is evident when 
comparing our map to human-drawn symbol maps (e.g., 
Antoniou et al. 2015; Child 1956), where background and 
symbols are often better integrated into a single coherent 
artistic product. Here, our use of custom-styled tiles, such 
as those of Gröbe et al. (2020) in Fig. 6, can be seen as a 
first step in improving fusion. Further work is needed, with 
specific aggregation routines that help generalize the map 
background or move details into the generated icons. We 
tested a posterior image-to-image step to better fuse the final 
map shown in Fig. 6 with the background, but the result was 
unsuitable due to distortions (see S3). Here, stable diffu-
sion extensions such as ControlNet10 (Zhang and Agrawala 
2023) or tile-based processing11 could be used in the future 
to incrementally construct a map with smooth transitions 
between different image representations for different areas. 

9 https:// github. com/ aymen furter/ micro agents.
10 https:// github. com/ lllya sviel/ Contr olNet.
11 https:// github. com/ Coyote- A/ ultim ate- upsca le- for- autom atic1 111.

https://github.com/aymenfurter/microagents
https://github.com/lllyasviel/ControlNet
https://github.com/Coyote-A/ultimate-upscale-for-automatic1111
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How to preserve topographic order in such an approach is 
an open question.

Our work shows an increasing reliance on user-contrib-
uted data, such as publicly shared geosocial media data or 
crowdsourced images, to train LDMs. We do not see this 
as a drawback. Maps that are automatically updated based 
on user input can be a fundamental tool for incorporating 
the collective attribution of meaning and importance by the 
population into map generation. They can also be used to 
motivate community input and enable participation in city 
and neighborhood planning. Community efforts can also be 
directed toward increasing the specificity of models through 
the use of embeddings (Ruiz et al. 2022) based on local 
image training data, which are better suited to replicate the 
unique appearance of certain landmarks, neighborhood 
styles, or contexts known only to locals. Our work also high-
lights the challenges of generative AI as a “black box” that 
is difficult to control without decomposing individual steps. 
By fully sharing the code and data for this study (Dunkel 
et al. 2023), we hope to encourage further research. Despite 
impressive practical progress, the theory and systematization 
of generative AI research has lagged behind development. 
Several parts of our workflow rely on publicly shared con-
tent whose exact creation is unknown. Here, reproducibility, 
transparency, and soundness are critical areas that require 
further contributions from the research community.
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